Edit page

Formulário Oficial

Formulário Oficial da Cadeira (PDF)

Integrais

dx(x2+b)32=1bxx2+b\int{\cfrac{dx}{(x^2 +b)^{\frac{3}{2}}}} = \cfrac{1}{b}\cfrac{x}{\sqrt{x^2 +b}}
xdx(x2+b)32=1x2+b\int{\cfrac{x dx}{(x^2 +b)^{\frac{3}{2}}}} = - \cfrac{1}{\sqrt{x^2 +b}}
xdxx2+b=x2+b\int{\cfrac{x dx}{\sqrt{x^2 + b}}} = \sqrt{x^2 +b}
dxx2+b=ln(x+x2+b)\int{\cfrac{ dx}{\sqrt{x^2 + b}}} = \ln(x + \sqrt{x^2 +b})
dxx(x+a)=1aln(xx+a)\int{\cfrac{ dx}{x (x + a)}} = \cfrac{1}{a} \ln(\cfrac{x}{x+a})

Coordenadas

Coordenadas Cartesianas (x,y,z)(x,y,z)

dl=dx ux+dy uy+dz uzd\vec l = dx \ \vec u_x + dy \ \vec u_y + dz \ \vec u_z

dS=dx dydS = dx \ dy

dv=dx dy dzdv = dx \ dy \ dz

F=(Fx,Fy,Fz)\vec \nabla F =( \cfrac{\partial F}{\partial x},\cfrac{\partial F}{\partial y},\cfrac{\partial F}{\partial z})

A=Axx+Ayy+Azz\vec \nabla \cdot \vec A = \cfrac{\partial A_x}{\partial x} + \cfrac{\partial A_y}{\partial y} + \cfrac{\partial A_z}{\partial z}

×A=(x,y,z)×(Ax,Ay,Az)\vec \nabla \times \vec A = (\cfrac{\partial }{\partial x}, \cfrac{\partial }{\partial y}, \cfrac{\partial }{\partial z}) \times (A_x, A_y, A_z)

Coordenadas Polares (r,θ)(r,\theta)

dl=dr ur+r dθ uθd\vec l = dr \ \vec u_r + r \ d\theta \ \vec u_{\theta}

dS=r dr dθdS = r \ dr \ d\theta

Coordenadas Cilíndricas (r,θ,z)(r, \theta, z)

dl=dr ur+r dθ uθ+dz uzd \vec l = dr \ \vec u_r + r \ d \theta \ \vec u{\theta} + dz \ \vec u_z

dv=r dr dθ dzdv = r \ dr \ d \theta \ dz

F=(Fr,1rFθ,Fz)\vec \nabla F = ( \cfrac{\partial F}{\partial r},\cfrac{1}{r}\cfrac{\partial F}{\partial \theta},\cfrac{\partial F}{\partial z})

A=1r(r Ar)r+1rAθθ+Azz\vec \nabla \cdot \vec A = \cfrac{1}{r}\cfrac{\partial(r \ A_r)}{\partial r} + \cfrac{1}{r}\cfrac{\partial A_{\theta}}{\partial \theta} + \cfrac{\partial A_z}{\partial z}

×A=(1rAzθAθz)ur+(ArzAzr)uθ+(1r(r Aθ)r1rArθ)uz\vec \nabla \times \vec A = (\cfrac{1}{r} \cfrac{\partial A_z}{\partial \theta}- \cfrac{\partial A_\theta}{\partial z}) \vec u_r + (\cfrac{\partial A_r}{\partial z} - \cfrac{\partial A_z}{\partial r} ) \vec u_{\theta} + (\cfrac{1}{r} \cfrac{\partial(r \ A_{\theta})}{\partial r} - \cfrac{1}{r} \cfrac{\partial A_r}{\partial \theta} )\vec u_z

Coordenadas Esféricas (r,θ,ϕ)(r,\theta, \phi)

dl=dr ur+r dθ uθ+r sinθ dϕ uϕd\vec l = dr \ \vec u_r + r \ d\theta \ \vec u_{\theta} + r \ sin \theta \ d \phi \ \vec u_{\phi}

dv=r2 dr sinθ dθ dϕdv = r^2 \ dr \ sin \theta \ d\theta \ d\phi

F=(Fr,1rFθ,1rsinθFϕ)\vec \nabla F = ( \cfrac{\partial F}{\partial r},\cfrac{1}{r}\cfrac{\partial F}{\partial \theta},\cfrac{1}{r sin \theta}\cfrac{\partial F}{\partial \phi})

A=1r2r(r2 Ar)+1rsinθθ(sinθAθ)+1rsinθϕ(Aϕ)\vec \nabla \cdot \vec A = \cfrac{1}{r^2} \cfrac{\partial}{\partial r} (r^2 \ A_r) + \cfrac {1}{r sin \theta} \cfrac{\partial}{\partial \theta} (sin \theta A_{\theta}) + \cfrac {1}{r sin \theta} \cfrac{\partial}{\partial \phi} (A_{\phi})

×A=(1rsinθ(sinθAϕ)θ(sinθAθ)ϕ)ur+1r(1sinθArϕ(rAϕ)r)uθ+1r((rAθ)rArθ)uϕ\vec \nabla \times \vec A = (\cfrac {1}{r sin \theta} \cfrac{\partial (sin \theta A_{\phi})}{\partial \theta} - \cfrac{\partial(sin \theta A_{\theta})} {\partial \phi} ) \vec u_r + \cfrac{1}{r} (\cfrac{1}{sin \theta} \cfrac{\partial A_r}{\partial \phi} - \cfrac{\partial(r A_{\phi})}{\partial r}) \vec u_{\theta} + \cfrac{1}{r} (\cfrac{\partial (r A_{\theta})}{\partial r} - \cfrac{\partial A_r}{\partial \theta}) \vec u_{\phi}

Teorema da Divergência

vA dv=SAn dS\int_v{\vec \nabla \cdot \vec A \ dv} = \oint_S{ \vec A \cdot \vec n \ dS}

Teorema de Stokes

S×A dS=ΓAdl\int_S {\vec \nabla \times \vec A \ d\vec S} = \oint_{\Gamma} \vec A \cdot d \vec l

Identidades Vetoriais

(A×B)=B(×A)A(×B)\vec \nabla \cdot (\vec A \times \vec B) = \vec B \cdot (\vec \nabla \times \vec A) - \vec A \cdot (\vec \nabla \times \vec B)

(×A)=0\vec \nabla \cdot (\vec \nabla \times \vec A) = 0

×(×A)=(A)2A\vec \nabla \times (\vec \nabla \times \vec A) = \vec \nabla (\vec \nabla \cdot \vec A) - \nabla^2 \vec A

Eletrostática

E=14πϵ0qr2 ur\vec E= \cfrac{1}{4\pi \epsilon_0} \cfrac{q}{r^2} \ \vec u_r

14πϵ0=9×109N m2 C2\cfrac{1}{4\pi \epsilon_0} = 9 \times 10^9 N \ m^2 \ C^{-2}

ΓEdl=0\oint_{\Gamma} \vec E \cdot d\vec l = 0

×E=0\nabla \times \vec E = 0

VP=PRefEdlV_P = \int_P^{Ref} \vec E \cdot d \vec l

E=V\vec E = - \vec \nabla V