Série de Taylor de uma Função Analítica
Seja f f f uma função analítica em x 0 ∈ R x_0\in\R x 0 ∈ R .
Então, f f f pode ser escrita de um modo único sob a forma de uma série de potências de x − x 0 x-x_0 x − x 0 através da série
f ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n f( x) =\sum ^{\infty }_{n=0}\frac{f^{( n)}( x_{0})}{n!}( x-x_{0})^{n} f ( x ) = n = 0 ∑ ∞ n ! f ( n ) ( x 0 ) ( x − x 0 ) n
nalguma vizinhança de x 0 x_0 x 0 . A esta série chama-se série de Taylor de f f f com respeito ao ponto x 0 x_0 x 0 .
Os coeficientes da série de potências são idênticos aos coeficientes do polinómio de Taylor .
⚠️ Nem todas as funções de classe C ∞ C^\infin C ∞ numa vizinhança de um ponto x 0 ∈ R x_0\in\R x 0 ∈ R são analíticas em x 0 x_0 x 0 .
👉 Tal como no polinómio de Taylor, costuma-se chamar a esta série, "Série de MacLaurin" quando x 0 = 0 x_0=0 x 0 = 0 .
Condição necessária e suficiente de analiticidade de uma função
Seja f f f uma função de classe C ∞ C^\infin C ∞ numa vizinhança de um ponto x 0 ∈ R x_0\in\R x 0 ∈ R .
Então, f f f é analítica em x 0 x_0 x 0 se e só se o resto de ordem n n n da fórmula de Taylor, R n R_n R n , converge pontualmente para 0 0 0 nalguma vizinhança de x 0 x_0 x 0 , ou seja, se para qualquer x ∈ V r ( x 0 ) x\in V_r(x_0) x ∈ V r ( x 0 ) ,
lim n → + ∞ R n ( x ) = 0 \lim_{n\to+\infin}R_n(x)=0 n → + ∞ lim R n ( x ) = 0
para algum r ∈ R + r\in\R^+ r ∈ R + .
Como esta condição é, por vezes, difícil de se verificar, usa-se frequentemente a condição abaixo, embora apenas seja suficiente e não necessária.
Condição suficiente de analiticidade de uma função
Seja f f f uma função de classe C ∞ C^\infin C ∞ numa vizinhança de x 0 ∈ R x_0\in\R x 0 ∈ R , V R ( x 0 ) V_R(x_0) V R ( x 0 ) , R ∈ R + R\in\R^+ R ∈ R + .
Então, se existem constantes A , B ∈ R + A,B \in\R^+ A , B ∈ R + tais que
∣ f ( n ) ( x ) ∣ ≤ A ⋅ B n |f^{(n)}(x)|\le A\cdot B^n ∣ f ( n ) ( x ) ∣ ≤ A ⋅ B n
para quaisquer x ∈ V r ( x 0 ) x\in V_r(x_0) x ∈ V r ( x 0 ) , 0 < r ≤ R 0<r\le R 0 < r ≤ R , e n ∈ N 0 n\in\N_0 n ∈ N 0 , f f f é analítica em x 0 x_0 x 0 .
Propriedades operatórias das funções analíticas
Sejam f f f e g g g duas funções analíticas em x 0 ∈ R x_0\in\R x 0 ∈ R e n ∈ N + n\in \N^+ n ∈ N + . Então:
f ± g f\pm g f ± g e f ⋅ g f\cdot g f ⋅ g são analíticas em x 0 x_0 x 0 ;
Se g ( x 0 ) ≠ 0 g(x_0)\ne 0 g ( x 0 ) = 0 então f g \frac fg g f é analítica em x 0 x_0 x 0 ;
f n f^n f n é analítica em x 0 x_0 x 0 ;
Se f ( x 0 ) > 0 f(x_0)>0 f ( x 0 ) > 0 então f n \sqrt[n]f n f é analítica em x 0 x_0 x 0 ;
Se f ( x 0 ) ≠ 0 f(x_0)\ne 0 f ( x 0 ) = 0 então ∣ f ∣ |f| ∣ f ∣ é analítica em x 0 x_0 x 0 .
Se f f f é analítica em x 0 x_0 x 0 e g g g é analítica em f ( x 0 ) f(x_0) f ( x 0 ) , então g ∘ f g\circ f g ∘ f é analítica em x 0 x_0 x 0 .
Determinação e aplicação das séries de Taylor Considere a função
f ( x ) = sin x f( x) =\sin x f ( x ) = sin x Sabendo que,
f ( n ) ( x ) = sin ( n π 2 + x ) f ( n ) ( π 4 ) = sin ( 2 n π 4 + π 4 ) = sin ( π + 2 n π 4 ) f^{( n)}( x) =\sin\left(\frac{n\pi }{2} +\smartcolor{orange}{x}\right)\\f^{( n)}\left(\frac{\pi }{4}\right) =\sin\left(\frac{2n\pi }{4} +\smartcolor{orange}{\frac{\pi }{4}}\right) =\sin\left(\frac{\pi +2n\pi }{4}\right) f ( n ) ( x ) = sin ( 2 nπ + x ) f ( n ) ( 4 π ) = sin ( 4 2 nπ + 4 π ) = sin ( 4 π + 2 nπ ) Podemos facilmente obter a série de Taylor.
f ( x ) = ∑ n = 0 ∞ sin ( π + 2 n π 4 ) n ! ( x − π 4 ) n f( x) =\sum ^{\infty }_{n=0}\frac{\smartcolor{blue}{\sin\left(\frac{\pi +2n\pi }{4}\right)}}{n!}\left( x-\frac{\pi }{4}\right)^{n} f ( x ) = n = 0 ∑ ∞ n ! sin ( 4 π + 2 nπ ) ( x − 4 π ) n No entanto, isto não torna muito óbvio quais são os coeficientes numéricos da série de potências. Pode-se reescrever f ( n ) ( π 4 ) f^{(n)}\left(\frac{\pi}{4}\right) f ( n ) ( 4 π ) da seguinte forma (não é imediato como):
sin ( π + 2 n π 4 ) = 2 2 [ sin ( n π 2 ) + cos ( n π 2 ) ] \sin\left(\frac{\pi +2n\pi }{4}\right) =\frac{\sqrt{2}}{2}\left[\sin\left(\frac{n\pi }{2}\right) +\cos\left(\frac{n\pi }{2}\right)\right] sin ( 4 π + 2 nπ ) = 2 2 [ sin ( 2 nπ ) + cos ( 2 nπ ) ] Como sin ( n π 2 ) + cos ( n π 2 ) \sin\left(\frac{n\pi }{2}\right) +\cos\left(\frac{n\pi }{2}\right) sin ( 2 nπ ) + cos ( 2 nπ ) é sempre 1 1 1 ou − 1 -1 − 1 , sabemos que ∣ a n ∣ = 2 2 n ! |a_n|=\frac{\sqrt 2}{2n!} ∣ a n ∣ = 2 n ! 2 .
Outra forma de resolver o exemplo anterior é através das propriedades das séries de potências e de desenvolvimentos conhecidos.
sin x = sin [ π 4 + ( x − π 4 ) ] = sin ( π 4 ) cos ( x − π 4 ) + cos ( π 4 ) sin ( x − π 4 ) = 2 2 cos ( x − π 4 ) + 2 2 sin ( x − π 4 ) \begin{aligned}
\sin x & =\sin\left[\smartcolor{orange}{\frac{\pi }{4}} +\smartcolor{blue}{\left( x-\frac{\pi }{4}\right)}\right]\\
& =\smartcolor{orange}{\sin\left(\frac{\pi }{4}\right)}\smartcolor{blue}{\cos\left( x-\frac{\pi }{4}\right)} +\smartcolor{orange}{\cos\left(\frac{\pi }{4}\right)}\smartcolor{blue}{\sin\left( x-\frac{\pi }{4}\right)}\\
& =\smartcolor{orange}{\frac{\sqrt{2}}{2}}\smartcolor{blue}{\cos\left( x-\frac{\pi }{4}\right)} +\smartcolor{orange}{\frac{\sqrt{2}}{2}}\smartcolor{blue}{\sin\left( x-\frac{\pi }{4}\right)}
\end{aligned} sin x = sin [ 4 π + ( x − 4 π ) ] = sin ( 4 π ) cos ( x − 4 π ) + cos ( 4 π ) sin ( x − 4 π ) = 2 2 cos ( x − 4 π ) + 2 2 sin ( x − 4 π ) Pelos desenvolvimentos conhecidos do seno e do cosseno :
sin x = 2 2 ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! ( x − π 4 ) 2 n + 2 2 ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! ( x − π 4 ) 2 n + 1 \sin x=\frac{\sqrt{2}}{2}\smartcolor{orange}{\sum ^{\infty }_{n=0}\frac{( -1)^{n}}{( 2n) !}\left( x-\frac{\pi }{4}\right)^{2n}} +\frac{\sqrt{2}}{2}\smartcolor{orange}{\sum ^{\infty }_{n=0}\frac{( -1)^{n}}{( 2n+1) !}\left( x-\frac{\pi }{4}\right)^{2n+1}} sin x = 2 2 n = 0 ∑ ∞ ( 2 n )! ( − 1 ) n ( x − 4 π ) 2 n + 2 2 n = 0 ∑ ∞ ( 2 n + 1 )! ( − 1 ) n ( x − 4 π ) 2 n + 1 Como a soma de duas funções inteiras é uma função inteira:
sin x = ∑ n = 0 ∞ a n ( x − π 4 ) n com a n = { 2 ( − 1 ) k 2 n ! se n = 2 k 2 ( − 1 ) k 2 n ! se n = 2 k + 1 \sin x=\sum ^{\infty }_{n=0} a_{n}\left( x-\frac{\pi }{4}\right)^{n} \quad \text{com} \quad a_{n} =\begin{cases}\frac{\sqrt{2}( -1)^{k}}{2n!} & \text{se } n=2k\\\frac{\sqrt{2}( -1)^{k}}{2n!} & \text{se } n=2k+1\end{cases} sin x = n = 0 ∑ ∞ a n ( x − 4 π ) n com a n = { 2 n ! 2 ( − 1 ) k 2 n ! 2 ( − 1 ) k se n = 2 k se n = 2 k + 1 Então:
f ( n ) ( π 4 ) = { 2 ( − 1 ) k 2 se n = 2 k 2 ( − 1 ) k 2 se n = 2 k + 1 f^{( n)}\left(\frac{\pi }{4}\right) =\begin{cases}\frac{\sqrt{2}( -1)^{k}}{2} & \text{se } n=2k\\\frac{\sqrt{2}( -1)^{k}}{2} & \text{se } n=2k+1\end{cases} f ( n ) ( 4 π ) = { 2 2 ( − 1 ) k 2 2 ( − 1 ) k se n = 2 k se n = 2 k + 1 Embora não pareça, as expressões em ambos os ramos são diferentes. Basta pensar que k = n 2 k=\frac n2 k = 2 n ou k = n − 1 2 k=\frac{n-1}2 k = 2 n − 1 respetivamente.
Considere-se a função
f : R \ { 1 } → R , f ( x ) = 1 1 − x f:\ \mathbb{R} \backslash \{1\}\rightarrow \mathbb{R} \quad ,\quad f( x) =\frac{1}{1-x} f : R \ { 1 } → R , f ( x ) = 1 − x 1 Relembrando a fórmula da soma de uma série geométrica , com r = x r=x r = x , obtemos a série de MacLaurin de f f f :
f ( x ) = 1 × x 0 1 − x = ∑ n = 0 ∞ x n , ∣ x ∣ < 1 f( x) =\frac{1\times x^{0}}{1-x} =\sum ^{\infty }_{n=0} x^{n} \quad ,\quad |x|< 1 f ( x ) = 1 − x 1 × x 0 = n = 0 ∑ ∞ x n , ∣ x ∣ < 1 Se quisermos obter f ( n ) ( 0 ) f^{(n)}(0) f ( n ) ( 0 ) , basta reescrever a série de MacLaurin para ficar mais evidente este termo:
∑ n = 0 ∞ x n = ∑ n = 0 ∞ n ! n ! x n f ( n ) ( 0 ) = n ! \sum ^{\infty }_{n=0} x^{n} =\sum ^{\infty }_{n=0}\frac{\smartcolor{orange}{n!}}{n!} x^{n}\\
\\
f^{( n)}( 0) =n! n = 0 ∑ ∞ x n = n = 0 ∑ ∞ n ! n ! x n f ( n ) ( 0 ) = n ! Para obter a série de Taylor de f f f relativa ao ponto 2, fazemos o seguinte:
f ( x ) = 1 1 − x = 1 1 − 2 − ( x − 2 ) = 1 − 1 − ( x − 2 ) = − 1 1 − [ − ( x − 2 ) ] f( x) =\frac{1}{1-x} =\frac{1}{1-2-( x-2)} =\frac{1}{-1-( x-2)} =\frac{-1}{1-\smartcolor{orange}{[ -( x-2)]}} f ( x ) = 1 − x 1 = 1 − 2 − ( x − 2 ) 1 = − 1 − ( x − 2 ) 1 = 1 − [ − ( x − 2 )] − 1 Usando, novamente, a fórmula da soma de uma série geométrica, desta vez com r = − ( x − 2 ) {r=-(x-2)} r = − ( x − 2 ) , obtermos:
f ( x ) = − 1 1 − [ − ( x − 2 ) ] = − ∑ n = 0 ∞ [ − ( x − 2 ) ] n , ∣ x − 2 ∣ < 1 f( x) =\frac{\smartcolor{pink}{-1}}{1-\smartcolor{orange}{[}\smartcolor{orange}{-}\smartcolor{orange}{(}\smartcolor{orange}{x-2}\smartcolor{orange}{)}\smartcolor{orange}{]}} =\smartcolor{pink}{-}\sum ^{\infty }_{n=0}[\smartcolor{orange}{-( x-2)}]^{n} \quad ,\quad |x-2|< 1 f ( x ) = 1 − [ − ( x − 2 ) ] − 1 = − n = 0 ∑ ∞ [ − ( x − 2 ) ] n , ∣ x − 2∣ < 1 Pode-se reescrever a série da seguinte forma, para obter f ( n ) ( 2 ) f^{(n)}(2) f ( n ) ( 2 ) :
f ( x ) = ∑ n = 0 ∞ [ ( − 1 ) ( − 1 ) n ( x − 2 ) n ] = ∑ n = 0 ∞ [ ( − 1 ) n + 1 ( x − 2 ) n ] = = ∑ n = 0 ∞ [ ( − 1 ) n + 1 n ! n ! ( x − 2 ) n ] , x ∈ V 1 ( 2 ) f( x) =\sum ^{\infty }_{n=0}\left[\smartcolor{pink}{( -1)}( -1)^{n}( x-2)^{n}\right] =\sum ^{\infty }_{n=0}\left[( -1)^{n\smartcolor{pink}{+1}}( x-2)^{n}\right] =\\
=\sum ^{\infty }_{n=0}\left[\frac{\smartcolor{blue}{( -1)^{n+1} n!}}{n!}( x-2)^{n}\right]\quad,\quad x\in V_1(2) f ( x ) = n = 0 ∑ ∞ [ ( − 1 ) ( − 1 ) n ( x − 2 ) n ] = n = 0 ∑ ∞ [ ( − 1 ) n + 1 ( x − 2 ) n ] = = n = 0 ∑ ∞ [ n ! ( − 1 ) n + 1 n ! ( x − 2 ) n ] , x ∈ V 1 ( 2 ) f ( n ) ( 2 ) = ( − 1 ) n + 1 n ! f^{( n)}( 2) =\smartcolor{blue}{(}\smartcolor{blue}{-1}\smartcolor{blue}{)}\smartcolor{blue}{^{n+1}}\smartcolor{blue}{n!} f ( n ) ( 2 ) = ( − 1 ) n + 1 n ! Considere-se a função
f : R \ { − 1 } → R , f ( x ) = x 1 + x f:\ \mathbb{R} \backslash \{-1\}\rightarrow \mathbb{R} \quad ,\quad f( x) =\frac{x}{1+x} f : R \ { − 1 } → R , f ( x ) = 1 + x x Pode-se usar uma técnica muito semelhante para determinar a série de MacLaurin de f f f . Novamente, pela fórmula da soma de uma série geométrica:
f ( x ) = x 1 + x = x ⋅ 1 1 − ( − x ) = x ∑ n = 0 ∞ ( − x ) n , ∣ − x ∣ < 1 f( x) =\frac{x}{1+x} =\smartcolor{pink}{x} \cdot \frac{1}{1-(\smartcolor{orange}{-x})} =\smartcolor{pink}{x}\sum ^{\infty }_{n=0}(\smartcolor{orange}{-x})^{n} \quad ,\quad |-x|< 1 f ( x ) = 1 + x x = x ⋅ 1 − ( − x ) 1 = x n = 0 ∑ ∞ ( − x ) n , ∣ − x ∣ < 1 f ( x ) = x ∑ n = 0 ∞ ( − x ) n = ∑ n = 0 ∞ [ ( − 1 ) n x n ⋅ x ] = ∑ n = 0 ∞ [ ( − 1 ) n x n + 1 ] = ∑ n = 1 ∞ [ ( − 1 ) n − 1 x n ] , x ∈ V 1 ( 0 ) \begin{aligned}f( x) & =\smartcolor{pink}{x}\sum ^{\infty }_{n=0}(\smartcolor{orange}{-x})^{n}\\ & =\sum ^{\infty }_{n=0}\left[( -1)^{n} x^{n} \cdot \smartcolor{pink}{x}\right]\\ & =\sum ^{\infty }_{n=0}\left[( -1)^{n} x^{n\smartcolor{pink}{+1}}\right]\\ & =\sum ^{\infty }_{n=1}\left[( -1)^{n-1} x^{n}\right] \quad ,\quad x\in V_{1}( 0)\end{aligned} f ( x ) = x n = 0 ∑ ∞ ( − x ) n = n = 0 ∑ ∞ [ ( − 1 ) n x n ⋅ x ] = n = 0 ∑ ∞ [ ( − 1 ) n x n + 1 ] = n = 1 ∑ ∞ [ ( − 1 ) n − 1 x n ] , x ∈ V 1 ( 0 ) Pode-se assim determinar f ( n ) ( 0 ) f^{(n)}(0) f ( n ) ( 0 ) :
f ( x ) = ∑ n = 1 ∞ [ ( − 1 ) n − 1 n ! n ! x n ] , x ∈ V 1 ( 0 ) f ( n ) ( 0 ) = { ( − 1 ) n − 1 n ! se n ⩾ 1 0 se n = 0 f( x) =\sum ^{\infty }_{n=1}\left[\frac{\smartcolor{blue}{( -1)^{n-1} n!}}{n!} x^{n}\right] \quad ,\quad x\in V_{1}( 0)\\
f^{( n)}( 0) =\begin{cases}
\smartcolor{blue}{(}\smartcolor{blue}{-1}\smartcolor{blue}{)}\smartcolor{blue}{^{n-1}}\smartcolor{blue}{n!} & \text{se } n\geqslant 1\\
0 & \text{se } n=0
\end{cases} f ( x ) = n = 1 ∑ ∞ [ n ! ( − 1 ) n − 1 n ! x n ] , x ∈ V 1 ( 0 ) f ( n ) ( 0 ) = { ( − 1 ) n − 1 n ! 0 se n ⩾ 1 se n = 0 Considere-se a função
f : R \ { 1 } → R , f ( x ) = x + 1 1 − x f:\ \mathbb{R} \backslash \{1\}\rightarrow \mathbb{R} \quad ,\quad f( x) =\frac{x+1}{1-x} f : R \ { 1 } → R , f ( x ) = 1 − x x + 1 Novamente, pelo mesmo raciocínio, para determinar a série de MacLaurin:
f ( x ) = x + 1 1 − x = ( x + 1 ) ∑ n = 0 ∞ x n = ∑ n = 0 ∞ [ x n ( x + 1 ) ] = ∑ n = 0 ∞ x n + 1 + x n = ∑ n = 0 ∞ x n + 1 + ∑ n = 0 ∞ x n = ∑ n = 1 ∞ x n + ∑ n = 0 ∞ x n = ∑ n = 1 ∞ x n + x 0 + ∑ n = 1 ∞ x n = 1 + 2 ∑ n = 0 ∞ x n = 1 + ∑ n = 0 ∞ 2 x n , ∣ x ∣ < 1 \begin{aligned}
f( x) & =\frac{\smartcolor{green}{x+1}}{1-\smartcolor{orange}{x}}\\
& =\smartcolor{green}{( x+1)}\sum ^{\infty }_{n=0}\smartcolor{orange}{x}^{n}\\
& =\sum ^{\infty }_{n=0}\left[ x^{n}\smartcolor{green}{( x+1)}\right]\\
& =\sum ^{\infty }_{n=0} x^{n+1} +x^{n}\\
& =\sum ^{\infty }_{n=0} x^{n\smartcolor{blue}{+1}} +\sum ^{\infty }_{n=0} x^{n}\\
& =\sum ^{\infty }_{n=\smartcolor{blue}{1}} x^{n} +\sum ^{\infty }_{n=\smartcolor{orange}{0}} x^{n}\\
& =\sum ^{\infty }_{n=1} x^{n} +x^{\smartcolor{orange}{0}} +\sum ^{\infty }_{n=\smartcolor{orange}{1}} x^{n}\\
& =1+\smartcolor{orange}{2}\sum ^{\infty }_{n=0} x^{n}\\
& =1+\sum ^{\infty }_{n=0}\smartcolor{orange}{2} x^{n} \quad ,\quad |x|< 1
\end{aligned} f ( x ) = 1 − x x + 1 = ( x + 1 ) n = 0 ∑ ∞ x n = n = 0 ∑ ∞ [ x n ( x + 1 ) ] = n = 0 ∑ ∞ x n + 1 + x n = n = 0 ∑ ∞ x n + 1 + n = 0 ∑ ∞ x n = n = 1 ∑ ∞ x n + n = 0 ∑ ∞ x n = n = 1 ∑ ∞ x n + x 0 + n = 1 ∑ ∞ x n = 1 + 2 n = 0 ∑ ∞ x n = 1 + n = 0 ∑ ∞ 2 x n , ∣ x ∣ < 1 Pode-se assim determinar f ( n ) ( 0 ) f^{(n)}(0) f ( n ) ( 0 ) :
f ( x ) = 1 + ∑ n = 1 ∞ 2 n ! n ! x n , ∣ x ∣ < 1 f ( n ) ( 0 ) = { 2 n ! se n ⩾ 1 1 se n = 0 f( x) =1+\sum ^{\infty }_{n=1}\frac{\smartcolor{blue}{2n!}}{n!} x^{n} \quad ,\quad |x|< 1\\f^{( n)}( 0) =\begin{cases}\smartcolor{blue}{2n!} & \text{se } n\geqslant 1\\1 & \text{se } n=0\end{cases} f ( x ) = 1 + n = 1 ∑ ∞ n ! 2 n ! x n , ∣ x ∣ < 1 f ( n ) ( 0 ) = { 2 n ! 1 se n ⩾ 1 se n = 0 Também se pode usar a propriedade de as séries de potências poderem ser derivadas e primitivadas termo a termo, no interior do seu intervalo de convergência.
Seja a função
f ( x ) = arctg x f(x)=\arctg x f ( x ) = arctg x Determinando a série de MacLaurin da derivada:
f ′ ( x ) = 1 1 + x 2 = 1 1 − ( − x 2 ) = ∑ n = 0 ∞ ( − x 2 ) n , ∣ − x 2 ∣ < 1 f'( x) =\frac{1}{1+x^{2}} =\frac{1}{1-\left(\smartcolor{orange}{-x^{2}}\right)} =\sum ^{\infty }_{n=0}\left(\smartcolor{orange}{-x^{2}}\right)^{n} \quad ,\quad |-x^{2} |< 1 f ′ ( x ) = 1 + x 2 1 = 1 − ( − x 2 ) 1 = n = 0 ∑ ∞ ( − x 2 ) n , ∣ − x 2 ∣ < 1 f ′ ( x ) = ∑ n = 0 ∞ [ ( − 1 ) n x 2 n ] , x ∈ V 1 ( 0 ) f'( x) =\sum ^{\infty }_{n=0}\left[( -1)^{n} x^{2n}\right] \quad ,\quad x\in V_{1}( 0) f ′ ( x ) = n = 0 ∑ ∞ [ ( − 1 ) n x 2 n ] , x ∈ V 1 ( 0 ) Primitivando termo a termo:
f ( x ) = ∑ n = 0 ∞ [ ( − 1 ) n 2 n + 1 x 2 n + 1 ] + K f( x) =\sum ^{\infty }_{n=0}\left[\frac{( -1)^{n}}{\smartcolor{orange}{2n+1}} x^{\smartcolor{orange}{2n+1}}\right] +K f ( x ) = n = 0 ∑ ∞ [ 2 n + 1 ( − 1 ) n x 2 n + 1 ] + K pois
∫ x 2 n d x = x 2 n + 1 2 n + 1 \int x^{2n} \ \mathrm{d} x=\frac{x^{2n+1}}{2n+1} ∫ x 2 n d x = 2 n + 1 x 2 n + 1
Podemos determinar K K K e f ( n ) ( 0 ) f^{(n)}(0) f ( n ) ( 0 ) :
f ( 0 ) = arctan 0 = 0 ⇔ K = 0 f ( x ) = ∑ n = 0 ∞ [ ( − 1 ) n 2 n + 1 x 2 n + 1 ] = ∑ n = 0 ∞ [ ( − 1 ) n ( 2 n ) ! ( 2 n + 1 ) ! x 2 n + 1 ] , x ∈ V 1 ( 0 ) f( 0) =\arctan 0=0\Leftrightarrow K=0\\f( x) =\sum ^{\infty }_{n=0}\left[\frac{( -1)^{n}}{2n+1} x^{2n+1}\right] =\sum ^{\infty }_{n=0}\left[\frac{\smartcolor{blue}{( -1)^{n} (2n)!}}{(2n+1)!} x^{2n+1}\right] \quad ,\quad x\in V_{1}( 0) f ( 0 ) = arctan 0 = 0 ⇔ K = 0 f ( x ) = n = 0 ∑ ∞ [ 2 n + 1 ( − 1 ) n x 2 n + 1 ] = n = 0 ∑ ∞ [ ( 2 n + 1 )! ( − 1 ) n ( 2 n )! x 2 n + 1 ] , x ∈ V 1 ( 0 ) Aqui, como x x x está elevado a 2 n + 1 2n+1 2 n + 1 , o fatorial no denominador dos coeficientes tem de ser ( 2 n + 1 ) ! (2n+1)! ( 2 n + 1 )! . Por isso, multiplica-se por ( 2 n ) ! (2n)! ( 2 n )! no numerador e no denominador.
( − 1 ) n ( 2 n ) ! ⟺ n = k ( − 1 ) k ( 2 k ) ! ⇔ ( − 1 ) k ( 2 k + 1 − 1 ) ! ⟺ n = 2 k + 1 ( − 1 ) k ( n − 1 ) ! ( -1)^{\smartcolor{orange}{n}}( 2\smartcolor{orange}{n}) !\ \underset{n=k}{\Longleftrightarrow } \ ( -1)^{\smartcolor{orange}{k}}( 2\smartcolor{orange}{k}) !\Leftrightarrow ( -1)^{k}(\smartcolor{blue}{2k+1} -1) !\ \underset{n=2k+1}{\Longleftrightarrow }( -1)^{k}(\smartcolor{blue}{n} -1) ! ( − 1 ) n ( 2 n )! n = k ⟺ ( − 1 ) k ( 2 k )! ⇔ ( − 1 ) k ( 2 k + 1 − 1 )! n = 2 k + 1 ⟺ ( − 1 ) k ( n − 1 )! f ( n ) ( 0 ) = { ( − 1 ) k ( n − 1 ) ! se n = 2 k + 1 0 se n = 2 k f^{( n)}( 0) =\begin{cases}( -1)^{k}( n-1) ! & \text{se } n=2k+1\\0 & \text{se } n=2k\end{cases} f ( n ) ( 0 ) = { ( − 1 ) k ( n − 1 )! 0 se n = 2 k + 1 se n = 2 k Seja a função
f : R \ { − 1 } → R , f ( x ) = 1 ( 1 + x ) 2 f:\mathbb{R} \backslash \{-1\}\rightarrow \mathbb{R} \quad ,\quad f( x) =\frac{1}{( 1+x)^{2}} f : R \ { − 1 } → R , f ( x ) = ( 1 + x ) 2 1 Neste caso, para obtermos algo conhecido, é útil primitivar a função dada.
F ( x ) = ∫ ( 1 + x ) − 2 d x = ( 1 + x ) − 1 − 1 = − 1 1 + x F( x) =\int ( 1+x)^{-2} \ \mathrm{d} x=\frac{( 1+x)^{-1}}{-1} =\frac{-1}{1+x} F ( x ) = ∫ ( 1 + x ) − 2 d x = − 1 ( 1 + x ) − 1 = 1 + x − 1 Novamente, pela fórmula da soma de uma série geométrica:
F ( x ) = − 1 ⋅ 1 1 − ( − x ) = − ∑ n = 0 ∞ ( − x ) n = ∑ n = 0 ∞ [ ( − 1 ) ( − 1 ) n x n ] = = ∑ n = 0 ∞ [ ( − 1 ) n + 1 x n ] , ∣ − x ∣ < 1 F( x) =\smartcolor{blue}{-1} \cdot \frac{1}{1-(\smartcolor{orange}{-x})} =\smartcolor{blue}{-}\sum ^{\infty }_{n=0}(\smartcolor{orange}{-x})^{n} =\sum ^{\infty }_{n=0}\left[(\smartcolor{blue}{-1})( -1)^{n} x^{n}\right] =\\=\sum ^{\infty }_{n=0}\left[( -1)^{n\smartcolor{blue}{+1}} x^{n}\right]\quad,\quad|-x|< 1 F ( x ) = − 1 ⋅ 1 − ( − x ) 1 = − n = 0 ∑ ∞ ( − x ) n = n = 0 ∑ ∞ [ ( − 1 ) ( − 1 ) n x n ] = = n = 0 ∑ ∞ [ ( − 1 ) n + 1 x n ] , ∣ − x ∣ < 1 Derivando agora termo a termo, para obter a série da função dada:
[ ( − 1 ) n + 1 x n ] ′ = ( − 1 ) n + 1 n x n − 1 \left[\smartcolor{orange}{( -1)^{n+1}} x^{\smartcolor{blue}{n}}\right] '=\smartcolor{orange}{( -1)^{n+1}}\smartcolor{blue}{n} x^{\smartcolor{blue}{n-1}} [ ( − 1 ) n + 1 x n ] ′ = ( − 1 ) n + 1 n x n − 1 Note-se que a derivada do primeiro termo é nula, pois é uma constante ( ( − 1 ) 0 + 1 x 0 = − 1 ) ((-1)^{0+1}x^0=-1) (( − 1 ) 0 + 1 x 0 = − 1 )
f ( x ) = ∑ n = 1 ∞ [ ( − 1 ) n + 1 n x n − 1 ] = ∑ n = 0 ∞ [ ( − 1 ) n ( n + 1 ) x n ] f( x) =\sum ^{\infty }_{n=\smartcolor{orange}{1}}\left[( -1)^{n+1} nx^{n-1}\right] =\sum ^{\infty }_{n=\smartcolor{orange}{0}}\left[( -1)^{n}( n+1) x^{n}\right] f ( x ) = n = 1 ∑ ∞ [ ( − 1 ) n + 1 n x n − 1 ] = n = 0 ∑ ∞ [ ( − 1 ) n ( n + 1 ) x n ] Podemos, assim, determinar f ( n ) ( 0 ) f^{(n)}(0) f ( n ) ( 0 ) :
f ( x ) = ∑ n = 0 ∞ [ ( − 1 ) n ( n + 1 ) ⋅ n ! n ! x n ] = ∑ n = 0 ∞ [ ( − 1 ) n ( n + 1 ) ! n ! x n ] f ( n ) ( 0 ) = ( − 1 ) n ( n + 1 ) ! f( x) =\sum ^{\infty }_{n=0}\left[\frac{( -1)^{n}( n+1) \cdot n!}{n!} x^{n}\right] =\sum ^{\infty }_{n=0}\left[\frac{\smartcolor{blue}{( -1)^{n}( n+1) !}}{n!} x^{n}\right]\\
f^{( n)}( 0) =\smartcolor{blue}{(}\smartcolor{blue}{-1}\smartcolor{blue}{)}\smartcolor{blue}{^{n}}\smartcolor{blue}{(}\smartcolor{blue}{n+1}\smartcolor{blue}{)}\smartcolor{blue}{!} f ( x ) = n = 0 ∑ ∞ [ n ! ( − 1 ) n ( n + 1 ) ⋅ n ! x n ] = n = 0 ∑ ∞ [ n ! ( − 1 ) n ( n + 1 )! x n ] f ( n ) ( 0 ) = ( − 1 ) n ( n + 1 ) !
Mais Exemplos Seja a função f f f , em que se pretende determinar a sua série de MacLaurin.
f ( x ) = log ∣ 2 + x ∣ f(x)=\log|2+x| f ( x ) = log ∣2 + x ∣ Usando a propriedade em que se pode derivar e primitivar termo a termo as séries de potências:
f ′ ( x ) = 1 2 + x = 1 2 ⋅ 1 1 − ( − x 2 ) = 1 2 ∑ n = 0 ∞ ( − x 2 ) n = 1 2 ∑ n = 0 ∞ ( − 1 ) n 2 n x n = ∑ n = 0 ∞ [ ( − 1 ) n 2 × 2 n x n ] = ∑ n = 0 ∞ [ ( − 1 ) n 2 n + 1 x n ] , ∣ − x 2 ∣ < 1 \begin{aligned}f'( x) & =\frac{1}{\smartcolor{blue}{2} +x}\\ & =\smartcolor{blue}{\frac{1}{2}} \cdot \frac{1}{1-\left(\smartcolor{orange}{-\frac{x}{2}}\right)}\\ & =\smartcolor{blue}{\frac{1}{2}}\sum ^{\infty }_{n=0}\left(\smartcolor{orange}{-\frac{x}{2}}\right)^{n}\\ & =\ \smartcolor{blue}{\frac{1}{2}}\sum ^{\infty }_{n=0}\frac{( -1)^{n}}{2^{n}} x^{n}\\ & =\sum ^{\infty }_{n=0}\left[\frac{( -1)^{n}}{\smartcolor{blue}{2} \times 2^{n}} x^{n}\right]\\ & =\sum ^{\infty }_{n=0}\left[\frac{( -1)^{n}}{2^{n\smartcolor{blue}{+1}}} x^{n}\right] \quad ,\quad \left| -\frac{x}{2}\right| < 1\end{aligned} f ′ ( x ) = 2 + x 1 = 2 1 ⋅ 1 − ( − 2 x ) 1 = 2 1 n = 0 ∑ ∞ ( − 2 x ) n = 2 1 n = 0 ∑ ∞ 2 n ( − 1 ) n x n = n = 0 ∑ ∞ [ 2 × 2 n ( − 1 ) n x n ] = n = 0 ∑ ∞ [ 2 n + 1 ( − 1 ) n x n ] , − 2 x < 1 Primitivando termo a termo, tem-se:
f ( x ) = ∑ n = 0 ∞ [ ( − 1 ) n ( n + 1 ) 2 n + 1 x n + 1 ] + K = ∑ n = 1 ∞ [ ( − 1 ) n − 1 n 2 n x n ] + K , x ∈ V 2 ( 0 ) \begin{aligned}f( x) & =\sum ^{\infty }_{n=\smartcolor{blue}{0}}\left[\frac{( -1)^{n}}{\smartcolor{orange}{( n+1)} 2^{n+1}}\smartcolor{orange}{x^{n+1}}\right] +K\\ & =\sum ^{\infty }_{n=\smartcolor{blue}{1}}\left[\frac{( -1)^{n-1}}{n2^{n}} x^{n}\right] +K\quad ,\quad x\in V_{2}( 0)\end{aligned} f ( x ) = n = 0 ∑ ∞ [ ( n + 1 ) 2 n + 1 ( − 1 ) n x n + 1 ] + K = n = 1 ∑ ∞ [ n 2 n ( − 1 ) n − 1 x n ] + K , x ∈ V 2 ( 0 ) Como f ( 0 ) = log 2 f(0)=\log2 f ( 0 ) = log 2 :
f ( 0 ) = log 2 ⇔ K = log 2 f ( x ) = log 2 + ∑ n = 1 ∞ [ ( − 1 ) n − 1 n 2 n x n ] , x ∈ V 2 ( 0 ) f( 0) =\log 2\Leftrightarrow K=\log 2\\\\f( x) =\log 2+\sum ^{\infty }_{n=1}\left[\frac{( -1)^{n-1}}{n2^{n}} x^{n}\right] \quad ,\quad x\in V_{2}( 0) f ( 0 ) = log 2 ⇔ K = log 2 f ( x ) = log 2 + n = 1 ∑ ∞ [ n 2 n ( − 1 ) n − 1 x n ] , x ∈ V 2 ( 0 ) Seja a função f f f em que se pretende calcular
f ( x ) = log ( 1 − x 1 + x ) f( x) =\log\left(\frac{1-x}{1+x}\right) f ( x ) = log ( 1 + x 1 − x ) Separando o logaritmo:
f ( x ) = log ( 1 − x ) − log ( 1 + x ) f( x) =\smartcolor{orange}{\log( 1-x)} -\smartcolor{blue}{\log( 1+x)} f ( x ) = log ( 1 − x ) − log ( 1 + x ) Determinando à parte o desenvolvimento do primeiro logaritmo:
[ log ( 1 − x ) ] ′ = − 1 1 − x = − ∑ n = 0 ∞ x n , ∣ x ∣ < 1 [\smartcolor{orange}{\log( 1-x)}] '=\frac{-1}{1-x} =\smartcolor{green}{-}\sum ^{\infty }_{n=0}\smartcolor{green}{x^{n}} \quad ,\quad |x|< 1 [ log ( 1 − x ) ] ′ = 1 − x − 1 = − n = 0 ∑ ∞ x n , ∣ x ∣ < 1 Primitivando termo a termo a série:
log ( 1 − x ) = ∑ n = 0 ∞ [ − 1 n + 1 x n + 1 ] + K , ∣ x ∣ < 1 \smartcolor{orange}{\log( 1-x)} =\sum ^{\infty }_{n=\smartcolor{orange}{0}}\left[\frac{\smartcolor{green}{-1}}{\smartcolor{green}{n+1}}\smartcolor{green}{x^{n+1}}\right] +K\quad ,\quad |x|< 1 log ( 1 − x ) = n = 0 ∑ ∞ [ n + 1 − 1 x n + 1 ] + K , ∣ x ∣ < 1 Mudando os índices da série e calculando K = 0 K=0 K = 0 :
log ( 1 − x ) = ∑ n = 1 ∞ [ − 1 n x n ] , ∣ x ∣ < 1 \smartcolor{orange}{\log}\smartcolor{orange}{(}\smartcolor{orange}{1-x}\smartcolor{orange}{)} =\sum ^{\infty }_{n=\smartcolor{orange}{1}}\left[\frac{\smartcolor{green}{-1}}{\smartcolor{green}{n}}\smartcolor{green}{x}\smartcolor{green}{^{n}}\right] \quad ,\quad |x|< 1 log ( 1 − x ) = n = 1 ∑ ∞ [ n − 1 x n ] , ∣ x ∣ < 1 Para determinar o desenvolvimento do segundo logaritmo, podemos substituir x x x por − x -x − x :
log ( 1 + x ) = ∑ n = 1 ∞ [ − 1 n ( − x ) n ] = ∑ n = 1 ∞ [ ( − 1 ) n + 1 n x n ] , ∣ x ∣ < 1 \smartcolor{blue}{\log( 1+x)} =\sum ^{\infty }_{n=1}\left[\frac{-1}{n}( -x)^{n}\right] =\sum ^{\infty }_{n=1}\left[\frac{( -1)^{n+1}}{n} x^{n}\right] \quad ,\quad |x|< 1 log ( 1 + x ) = n = 1 ∑ ∞ [ n − 1 ( − x ) n ] = n = 1 ∑ ∞ [ n ( − 1 ) n + 1 x n ] , ∣ x ∣ < 1 Juntando ambos:
f ( x ) = ∑ n = 0 ∞ [ − 1 n − ( − 1 ) n + 1 n ] x n , ∣ x ∣ < 1 f( x) =\sum ^{\infty }_{n=0}\left[\smartcolor{orange}{\frac{-1}{n}} -\smartcolor{blue}{\frac{( -1)^{n+1}}{n}}\right] x^{n} \quad ,\quad |x|< 1 f ( x ) = n = 0 ∑ ∞ [ n − 1 − n ( − 1 ) n + 1 ] x n , ∣ x ∣ < 1 Como para qualquer n n n par os coeficientes se anulam:
f ( x ) = ∑ n = 0 ∞ − 2 2 n + 1 x 2 n + 1 , ∣ x ∣ < 1 f( x) =\sum ^{\infty }_{n=0}\frac{-2}{\smartcolor{orange}{2n+1}} x^{\smartcolor{orange}{2n+1}} \quad ,\quad |x|< 1 f ( x ) = n = 0 ∑ ∞ 2 n + 1 − 2 x 2 n + 1 , ∣ x ∣ < 1
Séries de Taylor como meio para determinar somas de séries
Podemos usar as séries de Taylor para transformarmos uma série numa função conhecida, de forma a conseguir determinar a sua soma. São usadas as séries conhecidas de funções inteiras .
∑ n = 0 ∞ 1 n ! = [ ∑ n = 0 ∞ x n n ! ] x = 1 = [ e x ] x = 1 = e \sum ^{\infty }_{n=0}\frac{\smartcolor{orange}{1}}{n!} =\left[\sum ^{\infty }_{n=0}\frac{\smartcolor{blue}{x^{n}}}{n!}\right]_{\smartcolor{orange}{x=1}} =\left[ e^{x}\right]_{x=1} =e n = 0 ∑ ∞ n ! 1 = [ n = 0 ∑ ∞ n ! x n ] x = 1 = [ e x ] x = 1 = e
Pode ser preciso somar ou subtrair termos para chegarmos a algo conhecido:
∑ n = 2 ∞ 1 ( 2 n ) ! = [ ∑ n = 2 ∞ x 2 n ( 2 n ) ! ] x = 1 = [ cosh x − 1 − x 2 2 ] x = 1 = cosh 1 − 3 2 \sum ^{\infty }_{n=2}\frac{\smartcolor{orange}{1}}{( 2n) !} =\left[\sum ^{\infty }_{n=\smartcolor{green}{2}}\frac{\smartcolor{blue}{x^{2n}}}{( 2n) !}\right]_{\smartcolor{orange}{x=1}} =\left[\cosh x\smartcolor{green}{-1-\frac{x^{2}}{2}}\right]_{x=1} =\cosh 1-\frac{3}{2} n = 2 ∑ ∞ ( 2 n )! 1 = [ n = 2 ∑ ∞ ( 2 n )! x 2 n ] x = 1 = [ cosh x − 1 − 2 x 2 ] x = 1 = cosh 1 − 2 3
Pode ser preciso derivar ou primitivar termo a termo:
∑ n = 0 ∞ n 2 − n = [ ∑ n = 0 ∞ n x n ] x = 1 2 = [ x ∑ n = 1 ∞ n x n − 1 ] x = 1 2 \sum ^{\infty }_{n=0} n\smartcolor{orange}{2^{-n}} =\left[\sum ^{\infty }_{n=0} n\smartcolor{blue}{x^{n}}\right]_{\smartcolor{orange}{x=\frac{1}{2}}} =\left[\smartcolor{green}{x}\sum ^{\infty }_{n=1} nx^{n\smartcolor{green}{-1}}\right]_{x=\frac{1}{2}} n = 0 ∑ ∞ n 2 − n = [ n = 0 ∑ ∞ n x n ] x = 2 1 = [ x n = 1 ∑ ∞ n x n − 1 ] x = 2 1
Primitivando termo a termo:
∑ n = 1 ∞ n x n − 1 = [ ∑ n = 0 ∞ x n ] ′ = ( 1 1 − x ) ′ = 1 ( 1 − x ) 2 , ∣ x ∣ < 1 \sum ^{\infty }_{n=\smartcolor{orange}{1}}\smartcolor{orange}{nx^{n-1}} =\left[\sum ^{\infty }_{n=\smartcolor{orange}{0}}\smartcolor{orange}{x^{n}}\right]^{'} =\left(\frac{1}{1-x}\right)^{'} =\frac{1}{( 1-x)^{2}} \quad ,\quad |x|< 1 n = 1 ∑ ∞ n x n − 1 = [ n = 0 ∑ ∞ x n ] ′ = ( 1 − x 1 ) ′ = ( 1 − x ) 2 1 , ∣ x ∣ < 1
Então,
∑ n = 0 ∞ n 2 − n = [ x ( 1 ( 1 − x ) 2 ) ] x = 1 2 = 2 \sum ^{\infty }_{n=0} n2^{-n} =\left[\smartcolor{green}{x}\left(\smartcolor{blue}{\frac{1}{( 1-x)^{2}}}\right)\right]_{x=\frac{1}{2}} =2 n = 0 ∑ ∞ n 2 − n = [ x ( ( 1 − x ) 2 1 ) ] x = 2 1 = 2
Também pode ser necessário aplicar as operações de primitivação e de derivação pela ordem inversa.
∑ n = 1 ∞ 1 n ( − 3 ) n = [ ∑ n = 1 ∞ x n n ] x = − 1 3 \sum ^{\infty }_{n=1}\frac{1}{n\smartcolor{orange}{( -3)^{n}}} =\left[\sum ^{\infty }_{n=1}\frac{\smartcolor{blue}{x^{n}}}{n}\right]_{\smartcolor{orange}{x=-\frac{1}{3}}} n = 1 ∑ ∞ n ( − 3 ) n 1 = [ n = 1 ∑ ∞ n x n ] x = − 3 1
Por outro lado:
[ ∑ n = 1 ∞ x n n ] ′ = ∑ n = 1 ∞ x n − 1 = ∑ n = 0 ∞ x n = 1 1 − x , ∣ x ∣ < 1 \left[\sum ^{\infty }_{n=1}\frac{x^{n}}{n}\right]^{'} =\sum ^{\infty }_{n=\smartcolor{orange}{1}} x^{n\smartcolor{orange}{-1}} =\sum ^{\infty }_{n=\smartcolor{orange}{0}} x^{n} =\frac{1}{1-x} \quad ,\quad |x|< 1 [ n = 1 ∑ ∞ n x n ] ′ = n = 1 ∑ ∞ x n − 1 = n = 0 ∑ ∞ x n = 1 − x 1 , ∣ x ∣ < 1
Primitivando ambos os extremos da cadeira de identidades acima, obtemos:
∑ n = 1 ∞ x n n = − log ( 1 − x ) + K , ∣ x ∣ < 1 \sum ^{\infty }_{n=1}\frac{x^{n}}{n} =\smartcolor{blue}{-\log( 1-x) +K} \quad ,\quad |x|< 1 n = 1 ∑ ∞ n x n = − log ( 1 − x ) + K , ∣ x ∣ < 1
Para determinar K K K , nota-se que ∑ n = 1 ∞ x n n \sum ^{\infty }_{n=1}\frac{x^{n}}{n} ∑ n = 1 ∞ n x n vale 0 0 0 quando x = 0 x=0 x = 0 . Logo,
0 = − log 1 + K ⇔ K = log 1 ⇔ K = 0 0=-\log 1+K\Leftrightarrow K=\log 1\Leftrightarrow K=0 0 = − log 1 + K ⇔ K = log 1 ⇔ K = 0
Substituindo na expressão inicial
∑ n = 1 ∞ 1 n ( − 3 ) n = [ − log ( 1 − x ) ] x = − 1 3 = log 3 4 \sum ^{\infty }_{n=1}\frac{1}{n( -3)^{n}} =[\smartcolor{blue}{-\log( 1-x)}]_{x=-\frac{1}{3}} =\log\frac{3}{4} n = 1 ∑ ∞ n ( − 3 ) n 1 = [ − log ( 1 − x ) ] x = − 3 1 = log 4 3
Também de pode ter de aplicar este método mais do que uma vez:
∑ n = 2 ∞ 1 ( n 2 − n ) 2 n = [ ∑ n = 2 ∞ x n n 2 − n ] x = 1 2 \sum ^{\infty }_{n=2}\frac{1}{\left( n^{2} -n\right)\smartcolor{orange}{2^{n}}} =\left[\sum ^{\infty }_{n=2}\frac{\smartcolor{blue}{x^{n}}}{n^{2} -n}\right]_{\smartcolor{orange}{x=\frac{1}{2}}} n = 2 ∑ ∞ ( n 2 − n ) 2 n 1 = [ n = 2 ∑ ∞ n 2 − n x n ] x = 2 1
Derivando a série de potências:
[ ∑ n = 2 ∞ x n n 2 − n ] ′ = ∑ n = 2 ∞ n ⋅ x n − 1 n ⋅ ( n − 1 ) = ∑ n = 2 ∞ x n − 1 n − 1 \left[\sum ^{\infty }_{n=2}\frac{x^{n}}{n^{2} -n}\right]^{'} =\sum ^{\infty }_{n=2}\frac{\smartcolor{yellow}{n\cdot } x^{n-1}}{\smartcolor{yellow}{n\cdot }( n-1)} =\sum ^{\infty }_{n=2}\frac{x^{n-1}}{n-1} [ n = 2 ∑ ∞ n 2 − n x n ] ′ = n = 2 ∑ ∞ n ⋅ ( n − 1 ) n ⋅ x n − 1 = n = 2 ∑ ∞ n − 1 x n − 1
que ainda não é um desenvolvimento conhecido.
Derivando novamente:
[ ∑ n = 2 ∞ x n − 1 n − 1 ] ′ = ∑ n = 2 ∞ ( n − 1 ) ⋅ x n − 2 n − 1 = ∑ n = 2 ∞ x n − 2 = ∑ n = 0 ∞ x n = 1 1 − x , ∣ x ∣ < 1 \left[\sum ^{\infty }_{n=2}\frac{x^{n-1}}{n-1}\right]^{'} =\sum ^{\infty }_{n=2}\frac{\smartcolor{yellow}{( n-1)} \cdot x^{n-2}}{\smartcolor{yellow}{n-1}} =\sum ^{\infty }_{n=\smartcolor{orange}{2}} x^{n\smartcolor{orange}{-2}} =\sum ^{\infty }_{n=\smartcolor{orange}{0}} x^{n} =\frac{1}{1-x} \quad ,\quad |x|< 1 [ n = 2 ∑ ∞ n − 1 x n − 1 ] ′ = n = 2 ∑ ∞ n − 1 ( n − 1 ) ⋅ x n − 2 = n = 2 ∑ ∞ x n − 2 = n = 0 ∑ ∞ x n = 1 − x 1 , ∣ x ∣ < 1
De forma semelhante ao exemplo anterior, temos de primitivar duas vezes o resultado, determinando a constante K K K em cada uma das primitivações. Obtemos assim:
∑ n = 2 ∞ x n n 2 − n = ( 1 − x ) log ( 1 − x ) + x , ∣ x ∣ < 1 \sum ^{\infty }_{n=2}\frac{x^{n}}{n^{2} -n} =\smartcolor{blue}{( 1-x)\log( 1-x) +x} \quad ,\quad |x|< 1 n = 2 ∑ ∞ n 2 − n x n = ( 1 − x ) log ( 1 − x ) + x , ∣ x ∣ < 1
Substituindo na expressão anterior:
∑ n = 2 ∞ 1 ( n 2 − n ) 2 n = [ ( 1 − x ) log ( 1 − x ) + x ] x = 1 2 = 1 2 log ( e 2 ) \sum ^{\infty }_{n=2}\frac{1}{\left( n^{2} -n\right) 2^{n}} =[\smartcolor{blue}{(}\smartcolor{blue}{1-x}\smartcolor{blue}{)}\smartcolor{blue}{\log}\smartcolor{blue}{(}\smartcolor{blue}{1-x}\smartcolor{blue}{)}\smartcolor{blue}{+x}]_{x=\frac{1}{2}} =\frac{1}{2}\log\left(\frac{e}{2}\right) n = 2 ∑ ∞ ( n 2 − n ) 2 n 1 = [ ( 1 − x ) log ( 1 − x ) + x ] x = 2 1 = 2 1 log ( 2 e )
Também pode ocorrer o caso em que o método utilizado anteriormente não consegue eliminar o denominador porque o expoente da potência está "errado". Pode-se, assim, escolher a potência de forma diferente:
∑ n = 0 ∞ ( − 1 ) n 3 n ( 2 n + 1 ) = [ 3 ∑ n = 0 ∞ ( − 1 ) n 2 n + 1 x 2 n + 1 ] x = 1 3 \sum ^{\infty }_{n=0}\frac{( -1)^{n}}{\smartcolor{orange}{3^{n}}( 2n+1)} =\left[\smartcolor{blue}{\sqrt{3}}\sum ^{\infty }_{n=0}\frac{( -1)^{n}}{2n+1}\smartcolor{blue}{x^{2n+1}}\right]\smartcolor{orange}{_{x=\frac{1}{\sqrt{3}}}} n = 0 ∑ ∞ 3 n ( 2 n + 1 ) ( − 1 ) n = [ 3 n = 0 ∑ ∞ 2 n + 1 ( − 1 ) n x 2 n + 1 ] x = 3 1
Derivando a série de potências:
[ ∑ n = 0 ∞ ( − 1 ) n 2 n + 1 x 2 n + 1 ] ′ = ∑ n = 0 ∞ ( − 1 ) n x 2 n = ∑ n = 0 ∞ ( − x 2 ) n = 1 1 + x 2 , ∣ x ∣ < 1 \left[\sum ^{\infty }_{n=0}\frac{( -1)^{n}}{2n+1} x^{2n+1}\right]^{'} =\sum ^{\infty }_{n=0}( -1)^{n} x^{2n} =\sum ^{\infty }_{n=0}\left( -x^{2}\right)^{n} =\frac{1}{1+x^{2}} \quad ,\quad |x|< 1 [ n = 0 ∑ ∞ 2 n + 1 ( − 1 ) n x 2 n + 1 ] ′ = n = 0 ∑ ∞ ( − 1 ) n x 2 n = n = 0 ∑ ∞ ( − x 2 ) n = 1 + x 2 1 , ∣ x ∣ < 1
Primitivando, como anteriormente, ambos os extremos da cadeia de identidades:
∑ n = 0 ∞ ( − 1 ) n 2 n + 1 x 2 n + 1 = arctan x + K , ∣ x ∣ < 1 \sum ^{\infty }_{n=0}\frac{( -1)^{n}}{2n+1} x^{2n+1} =\smartcolor{blue}{\arctan x+K} \quad ,\quad |x|< 1 n = 0 ∑ ∞ 2 n + 1 ( − 1 ) n x 2 n + 1 = arctan x + K , ∣ x ∣ < 1
Como a série do membro esquerdo se anula na origem, K = 0 K=0 K = 0 , e então:
∑ n = 0 ∞ ( − 1 ) n 3 n ( 2 n + 1 ) = [ 3 arctan x ] x = 1 3 = 3 π 6 \sum ^{\infty }_{n=0}\frac{( -1)^{n}}{3^{n}( 2n+1)} =\left[\sqrt{3}\smartcolor{blue}{\arctan x}\right]_{x=\frac{1}{\sqrt{3}}} =\frac{\sqrt{3} \pi }{6} n = 0 ∑ ∞ 3 n ( 2 n + 1 ) ( − 1 ) n = [ 3 arctan x ] x = 3 1 = 6 3 π
Cálculo de Integrais de Funções utilizando Séries
Por exemplo, para calcular
∫ 0 1 e t 2 d t \int ^{1}_{0} e^{t^{2}} \ \mathrm{d} t ∫ 0 1 e t 2 d t
Pode-se usar o desenvolvimento da série de MacLaurin da exponencial, que já é primitivável termo a termo:
∫ 0 1 e t 2 d t = ∫ 0 1 ∑ n = 0 ∞ t 2 n n ! d t = ∑ n = 0 ∞ ( 1 n ! [ t 2 n + 1 2 n + 1 ] 0 1 ) = ∑ n = 0 ∞ 1 ( 2 n + 1 ) n ! \int ^{1}_{0} e^{t^{2}} \ \mathrm{d} t=\int ^{1}_{0}\sum ^{\infty }_{n=0}\frac{t^{2n}}{n!} \ \mathrm{d} t=\sum ^{\infty }_{n=0}\left(\frac{1}{n!}\left[\frac{t^{2n+1}}{2n+1}\right]^{1}_{0}\right) =\sum ^{\infty }_{n=0}\frac{1}{( 2n+1) n!} ∫ 0 1 e t 2 d t = ∫ 0 1 n = 0 ∑ ∞ n ! t 2 n d t = n = 0 ∑ ∞ ( n ! 1 [ 2 n + 1 t 2 n + 1 ] 0 1 ) = n = 0 ∑ ∞ ( 2 n + 1 ) n ! 1
Resolução de Equações Funcionais utilizando Séries
Por exemplo, para determinar uma solução inteira, f f f , da equação funcional
f ′ ( x ) − x 2 f ( x ) = e x , x ∈ R f'( x) -x^{2} f( x) =e^{x} \quad ,\quad x\in \mathbb{R} f ′ ( x ) − x 2 f ( x ) = e x , x ∈ R
Se tal solução existir, ela deverá ter uma série de MacLaurin:
f ( x ) = ∑ n = 0 ∞ a n x n f( x) =\sum ^{\infty }_{n=0} a_{n} x^{n} f ( x ) = n = 0 ∑ ∞ a n x n
Que, substituindo na equação funcional:
( ∑ n = 0 ∞ a n x n ) ′ − x 2 ∑ n = 0 ∞ a n x n = ∑ n = 0 ∞ x n n ! \left(\sum ^{\infty }_{n=0} a_{n} x^{n}\right)^{'} -x^{2}\sum ^{\infty }_{n=0} a_{n} x^{n} =\sum ^{\infty }_{n=0}\frac{x^{n}}{n!} ( n = 0 ∑ ∞ a n x n ) ′ − x 2 n = 0 ∑ ∞ a n x n = n = 0 ∑ ∞ n ! x n
Derivando termo a termo e efetuando os cálculos:
∑ n = 1 ∞ n a n x n − 1 − ∑ n = 0 ∞ a n x n + 2 = ∑ n = 0 ∞ x n n ! \sum ^{\infty }_{n=1} na_{n} x^{n-1} -\sum ^{\infty }_{n=0} a_{n} x^{n+2} =\sum ^{\infty }_{n=0}\frac{x^{n}}{n!} n = 1 ∑ ∞ n a n x n − 1 − n = 0 ∑ ∞ a n x n + 2 = n = 0 ∑ ∞ n ! x n
Mudando os índices dos somatórios:
∑ n = 0 ∞ ( n + 1 ) a n + 1 x n − ∑ n = 2 ∞ a n − 2 x n = ∑ n = 0 ∞ x n n ! \sum ^{\infty }_{n=0}( n+1) a_{n+1} x^{n} -\sum ^{\infty }_{n=2} a_{n-2} x^{n} =\sum ^{\infty }_{n=0}\frac{x^{n}}{n!} n = 0 ∑ ∞ ( n + 1 ) a n + 1 x n − n = 2 ∑ ∞ a n − 2 x n = n = 0 ∑ ∞ n ! x n
E, finalmente, somando ambas as séries (pois a soma de duas séries de potências convergentes em R \R R é uma série de potências convergente em R \R R ):
a 1 + 2 a 2 x + ∑ n = 2 ∞ ( ( n + 1 ) a n + 1 − a n − 2 ) x n = ∑ n = 0 ∞ x n n ! a_{1} +2a_{2} x+\sum ^{\infty }_{n=2}(( n+1) a_{n+1} -a_{n-2}) x^{n} =\sum ^{\infty }_{n=0}\frac{x^{n}}{n!} a 1 + 2 a 2 x + n = 2 ∑ ∞ (( n + 1 ) a n + 1 − a n − 2 ) x n = n = 0 ∑ ∞ n ! x n
Tendo em conta a unicidade da série de Taylor, obtém-se:
{ a 1 = 1 2 a 2 = 1 ( n + 1 ) a n + 1 − a n − 2 = 1 n ! , n ⩾ 2 \begin{cases}a_{1} =1 & \\2a_{2} =1 & \\( n+1) a_{n+1} -a_{n-2} =\frac{1}{n!} & ,\quad n\geqslant 2\end{cases} ⎩ ⎨ ⎧ a 1 = 1 2 a 2 = 1 ( n + 1 ) a n + 1 − a n − 2 = n ! 1 , n ⩾ 2
Reescrevendo as condições acima:
{ a 1 = 1 2 a 2 = 1 a n + 1 = 1 ( n + 1 ) ! + a n − 2 n + 1 , n ⩾ 2 \begin{cases}a_{1} =1 & \\2a_{2} =1 & \\a_{n+1} =\frac{1}{( n+1) !} +\frac{a_{n-2}}{n+1} & ,\quad n\geqslant 2\end{cases} ⎩ ⎨ ⎧ a 1 = 1 2 a 2 = 1 a n + 1 = ( n + 1 )! 1 + n + 1 a n − 2 , n ⩾ 2
Obtêm-se assim a sucessão ( a n ) (a_n) ( a n ) por recorrência, exceto o valor de a 0 a_0 a 0 o qual deve ser dado para o problema ter solução única.
PDFs: